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Abstract— The use of socially assistive robots in real envi-
ronments, such as nursing homes or geriatric residences, is
spreading in recent years. Social robot navigation in these
complex environments, with multiple users and dynamic ob-
jects, is an essential task for the next generation of service
robots. This navigation must respect social rules, for example
not to interrupt an interaction between two people or between
a person and an object. Current navigation frameworks in
robotics literature do not take into account the social complexity
of the scenarios like, for example, the relation of the objects
and their use by people with time. This article presents
an approach to the idea of time-dependent social mapping.
The main novelty is the definition and development of time-
dependent affordance spaces. Each object has a zone that vary
in function of time and the activities scheduled by the center’s
staff. Therefore, the planning of the best path by the robot
takes into consideration this variation on time achieving a
higher degree of social navigation. Several use cases have been
performed in a simulated scenario to asses the robustness and
validity of the proposal using these temporal variables.

I. INTRODUCTION

Social robots will be a reality in caregiving centers in the
near future [1]. Human-robot interaction is needed to perform
complex tasks, and most of them need robust navigation that
implies planning in a socially aware manner [10].

The predominant approach in literature to solve this type
of problem is based on proxemics: the robot navigates in the
environment without disturbing people’s personal spaces or
interrupting their interaction with other people or objects [2].
Social mapping techniques are used to solved these situ-
ations. Social mapping extend metric and semantic maps
including social information of the environment [3]. Usually,
the regions in the environment where the robot should not
go through are mapped as banned regions.

In the scene depicted in Fig. 1. The robot plans a path that
not only takes into account the free space, but also takes into
account other constraints related to objects, people and their
interaction. According to the definition of affordance [5],
understood as the space of interaction associated with an
object, this could be vary in function of time. Or, in other
words, this space of interaction could be mapped as banned
regions or a free regions in function of time. In Fig. 1a,
around the object table, its affordance space has been drawn
in red (banned region) during a therapy session with elderly
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(a)
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Fig. 1: Two distinct situations in the same room: a) The robot
knows that there is an activity at that time and planning a
path according to the situation; b) In the second situation,
there is no therapy, and the robot uses the affordance space
to plan the path.

people. Consequently, the robot avoids this area in its path
planning. The object table is not always being used, in fact,
its use depends on the therapeutic sessions scheduled. The
second situation is represented in Fig. 1b, where the robot
plans a different trajectory, based on the activities scheduled,
without the risk of invading the object affordance space.

This work presents an approach to the idea of a time-
dependent social mapping, where the planning of routes
includes the use of the objects affordance spaces over time,
restricting or releasing some areas according to the activities
scheduled. This social information is added on top of the
free-space graph which is later used for path planning and
navigation. As a main contribution, the paper describes
this new model for the definition of the time-dependent
affordance spaces.

This article is organized as follows: In section II a dis-
cussion of previous works is provided. Section III presents
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an overview of the proposed. Next, Section IV describes the
new model of affordance spaces, including its dependence
over time. Section V presents the socially-accepted path-
planning algorithm proposed. Finally, Section VI shows the
experimental results obtained and Section VII summarizes
the main conclusions and future directions.

II. RELATED WORK

Navigation in human environments is related to human’s
perception of robot’s intelligence [6]. Path-planning must
take into account people, objects and their interactions and
including social conventions [10].

In the last decade, social navigation has been extensively
studied, and various techniques have been proposed. Several
authors suggest models of social rules using cost functions
adding social conventions, social constraints, or both as a
usual solution [7], [8]. In [7], for example, the authors
combine social conventions such as overtaking a person on
the right with classic path-planning algorithms such as A*. In
[8], the authors use potential fields and a proxemics model
in order to define regions where robot is able to navigate.

In this respect, most works in the literature use the concept
of social mapping to define social interaction spaces in
which robot navigation is forbidden or penalized [4]. In [3],
[9], for instance, by using the proxemics concept, areas in
people’s surroundings where the robot cannot navigate are
defined. Furthermore, other works use the term activity space
or object affordance to restrict or even block the robot’s
navigation creating regions around objects [10], [5]. Recently
the idea of spaces for interaction and how they could be used
to define social paths have been proposed [11]. However,
all previous authors and works consider these social maps
as static, and there is no dependence over time or other
type of situations. Several of these concepts are used in this
article where, as main novelty, it is defined these spaces of
interaction of the object as time-dependent affordance spaces,
taking into account the activities agenda of an elderly care
center.

III. OVERVIEW OF THE SOCIAL NAVIGATION
FRAMEWORK

Our proposal is based on Deep State Representation
(DSR), a shared representation of the environment, and
the CORTEX cognitive architecture described in [12], to
allow the incorporation of several sources of information
into a common knowledge. DSR is a multi-labelled graph
that defines the information of the environment: rooms,
humans, objects, as well as the robot, among others. In this
graph, nodes are the elements, and edges are the relationship
between them (e.g., ”in”, ”connected”, etc). Software agents
interact with this DSR to include new nodes (e.g., a new
person come in the robot’s room, or a new object is detected)
or update relationships (e.g., Two people starts an interaction
or the robot moves to another room). Fig. 2 displays an
example of the multi-labelled graph for an eldercare facility.

Fig. 3 shows the proposal overview. The social navigation
agent builds the social map according to the DSR. Var-

Fig. 2: DSR example for a caregiving center.

Fig. 3: Overview of the proposed system.

ious sources update the DSR. The human-observer agent
is in charge of detecting and tracking people. The object-
recognition agent is responsible for detecting objects and
monitoring their pose. The time dependence is provided by
the center’s professionals trough the activities agenda. The
weights of each node depend on the social map generated by
the cognitive architecture. Lastly, the social path is planned
using the Dijkstra algorithm with a free-space graph.

IV. TIME-DEPENDENT SOCIAL MAP

To path-planning in real environments with people and
objects, the proposed work builds a social map of the
robot’s surroundings. This involves the definition of time-
dependent affordance spaces associated with objects and
personal spaces associated with people.

A. Social mapping: time-dependent affordance spaces

The literature defines the idea of Affordance Space to
indicates areas where humans normally perform activities
with objects [5]. These spaces are related to how people
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Fig. 4: Three types of objects and their affordance spaces

interact with objects; for example, the interaction with a table
is different from the interaction with a chair. These spaces are
also called Activity spaces usually represented in a semantic
map, which allows the semantics of space to be taken into
account in the planning of socially acceptable navigation
solutions. However, these spaces no vary and have been fixed
a priori. To achieve a better social path planning our proposal
makes the values of these spaces time-dependent.

Therefore, let OM = {o1, ..., oM} be the set of M objects
with which humans can interact in the environment. Each
object ok ∈ OM stores its pose pok = (x, y, θk), its
affordance space Aok , which is associated with the space
needed to interact with this object and its time-dependence
Rok(t),

ok = (pok , Aok , Rok(t))

Distinct objects have different affordance spaces, Aok , and
are defined for each object ok ∈ OM . These areas have
been defined according to the type of object and how thee
interaction is performed ( Fig.4). The three types used here
are described below:
• Trapezoidal shapes: Object like TVs are common in

caregiving center. This type of objects are modeled as
an isosceles trapezoid with height t′h and widths (t′w1,
t′w2), as described in [10].

at = t′h ·
t′w1 + t′w2

2
(1)

• Rectangle shapes: Objects like tables, beds or stretchers
are rectangular objects typically used in caregiving
centers. These objects are modeled as a rectangle with
height r′h and width r′w.

ar = r′h · r′w (2)

• Circular shapes: Objects like circular tables are also
common in caregiving centers. These objects are mod-
eled as a circle with center in pok and radius c′r.

ac = π · c′r
2 (3)

This affordance space for each object is used by the
navigation algorithm at time t and it is associated with
different costs in the free-space graph used for navigation.
Activities for each object are scheduled by the center’s staff

providing at start and end time. As mentioned before, each
object has associated a time-dependent function Rok(t).
Rok(t) ranges from Rmin ≤ Rok(t) ≤ Rmax, where

Rmin means that the object does not have any activity
scheduled at that time t and the robot can use this affordance
space to path-planning and navigate. When the start time of
the activity is approaching, the value of Rok(t) increases,
changing the cost of the affordance space in the free-space
graph used for navigation. Finally, Rmax means that the
object has an activity scheduled at time t and the robot cannot
use this affordance space to path-planning and navigate
(Fig. 6).

B. Social mapping: personal spaces

Let HN = {h1, h2...hN} be a set of N humans detected
by the human-observer agent, where hi = (x, y, θ) is the
pose of the i-th human in the environment. To model the
interaction space of each person hi an asymmetric 2-D
Gaussian curve gi(x, y) is used, as described in [10]:

ghi(x, y) = exp−(γ1(x−xi)2+γ2(x−xi)(y−yi)+γ3(y−yi)2) (4)

, where the coefficients γ1, γ2 and γ3 are associated to the
rotation of the function βi. Let σs be the variance on the left
and right directions (βi ± π/2), which defines the variance
along the βi direction (σh), or the variance to the rear (σr),
this function βi is defined next:

γ1(βi) =
cos(βi)

2

2σ2
+
sin(βi)

2

2σ2
s

γ2(βi) =
sin(2βi)

4σ2
− sin(2βi)

4σ2
s

γ3(βi) =
sin(βi)

2

2σ2
+
cos(βi)

2

2σ2
s

Once people have been detected is grouping by performing
a Gaussian Mixture [10]. Fig. 5a shows a person, labeled
as ’1’, and its personal space modeled by the assymetric
Gaussian (Fig. 5b). Fig. 5a also shows two people labeled
as ’2’ and its personal spaces clustered a Gaussian Mixture
(Fig. 5b).

The personal space function ghi
, of each individual i in

the environment is added and a Global Space function G(p)
is built. From this function, a contour Ji is established as a
function of the density threshold φ. Finally, the contours of
these regions are defined by a set of k polygonal chain (i.e.,
polyline) Lk = {l1, ..., lk}, where k is the number of regions
detected by the algorithm. The curve li is described as li=
{a1, ..., am}, being ai = (x, y)i the vertices of the curve,
which are located in the contour of the region Ji.

Lastly, the interaction space surrounding a person is clas-
sified into four zones, according to the degree of social
interaction: public, social, personal, and intimate zones.
Each human hi in the environment will have three asso-
ciated spaces: the intimate space, defined by the polyline
Lk

intimate; the personal space, defined by Lk
personal; and

the social space, delimited by Lksocial , each of them being
larger than the previous one, as it was introduced in [9].
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(a)

(b)

Fig. 5: A typical scenario with people in an eldercare center;
b) their correspondent asymmetric Gaussian have been drawn
and labeled with the same number. Note that there is a
Gaussian clustering of two persons labeled as ’2’.

The public zone is the remaining free space. These contours,
which are created by choosing different values of the density
threshold φ, are illustrated in Fig. 5b.

V. SOCIALLY-ACCEPTABLE PATH-PLANNING ALGORITHM

Robot’s environment is represented by a uniform graph
composed of obstacle-free nodes, that have a different finite
traversal cost. This graph is used to estimate the optimal path
using traditional Dijkstra’s algorithm.

A. Graph-based grid mapping

Space is represented by a graph G(N,E) of n nodes,
regularly distributed in the environment. Each node ni has
two parameters: availability, an, and cost, cn. The availability
of a node is a boolean variable whose value is 1 if the space
is free, 0 otherwise. The cost, ci, indicates the traversal cost
of a node.Initially, all nodes have equal availabilty 1 and cost
1. Fig. 7a displays the initial free-space graph.

Dijkstra’s algorithm calculates the cost from the origin to
the target node, taking into account the nodes’ cost. A path
is the sum of each node’s cost traversed, and the path with
the lowest total cost is selected.

B. Social graph-based grid mapping

The free-space graph include the affordance spaces of the
objects and the personal spaces to represent the social map
of interaction.

Fig. 6: Representation of the time-dependent affordance
space function R(t).

1) Time-dependent affordance spaces of objects: Being A
the matrix formed by the availability of each node and C the
matrix formed by the costs and considering the set of shapes
used to define the affordance spaces, this paper modifies the
node’s availability and cost, according to the time-dependent
affordance spaces proposed.

Firstly, for each object is defined a polygon Po, that
represents the availability, aoi , of all the nodes ni ∈ A
contained in the space formed by the polygon Po. The
availability of the nodes of each object, aoi in the matrix
A, is set to occupied, aoi = occupied, while availability of
the rest of nodes is not modified.

Secondly, let Lto = {Ato1 , ..., AtoM } be the set of
polylines that describe the time-dependent affordance space
for each object. For each Atok is defined a polygon P tok
formed by the points of the polyline, which maps these
points with the costs of the nodes in the free-space graph.
Accordingly, the cost of the nodes in the matrix C are set
to ctok = R(t) in the free-space graph, these values are
associated to the scheduled activities for each object.

Figure 6 represent how the cost changes progressively in
function of time. Starting at ctok = 1.5, which means that no
activity is scheduled and ending at ctok = 3.5, which means
that there is an activity. It should be noted that it is greater
than 1 when there is no activity. This contributes to respect
the shape of the object’s affordance space during navigation,
for example, in the case of a table. The penalization in
the cost does not prevent it from crossing the affordance
space when necessary, for example, in the case of a TV.
Consequently, the robot exhibits better social navigation.

Thus, nodes of the free space graph ni ∈ C contained in
P ti are modified in order to set its cost to these values. Fig. 7b
shows three different objects and their space affordances with
different colors depending of the value of ctok . To simplify the
representation, we have defined four colors that correspond
to the discretization in four intervals of the values of ctok ,
namely, yellow if (1.5 ≤ ctok ≤ 2.0), dark yellow if (2.0 ≤
ctok ≤ 2.5), orange if (2.5 ≤ ctok ≤ 3.0), dark orange if
(3.0 ≤ ctok ≤ 3.5).

2) Personal Space mapping: Being A the matrix formed
by the availability of each node and C the matrix formed
by the costs and considering the set of polygonal curves that
define the personal space of a human as: intimate, personal
and social, this paper also present the modification of the
cost and availability of the nodes of the free-space graph
according to these personal spaces.

Let Hi = {Liintimate, Lipersonal, Lisocial} be the set of
polylines that describe the personal space for each human.
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(a) (b)

Fig. 7: a) Example of the free-space graph; b) result of
including the time-dependent affordance spaces and personal
spaces in the free-space graph.

For each polyline Li is defined a polygon Pi formed by
the points of the polyline. Accordingly, P intimatei , P personali

and P sociali are built. The availability ahi
of all the nodes

ni ∈ A contained in the space formed by P intimatei is set to
occupied, ahi

= occupied. This means that the robot will not
be able to invade this space, as it would disturb the person.
For personal and social spaces, the availability of the nodes in
the graph will not change, but their cost will. For personal
and social spaces, P personali and P sociali respectively, the
cost chi

of all the nodes ni ∈ C, contained in the space
formed by P personali have been set to a value four times
higher than the free node, chpersonal

i
= 4.0 and two times

higher for the nodes contained in P sociali , chsocial
i

= 2.0 (see
Fig. 7a).

Intimate areas are forbidden for navigation. Starting from
the free-space, the cost doubles when the robot needs to use
a more personal space in its path-planning or navigation.
In this way, when the robot plans the shortest path, it will
move away, reasonably, from the person, exhibiting a better
human-aware navigation.

VI. EXPERIMENTAL RESULTS

A use case is illustrated in Fig. 9 and evaluates the
approach described in this paper for building time-dependent
affordance spaces. The caregiving center is composed by a
occupational therapy room with two objects, a TV and a
circular table, and a physical therapy room with a stretcher.

The agenda has been set by the center’s professionals and
is composed of two activities: the first one is a serious game
that needs the television to be performed and it is scheduled
from 11am to 12pm. The robot’s task is to move to a position
close to the TV before the first activity ends. The second
one is a therapy that needs the table to be performed and
it is scheduled from 12pm to 14pm. The robot’s task is to
move to a position close to the table once of the activity
has started. Consequently, Fig. 8 shows, in the upper part,
the graph of the function Rotv(t) generated for the television
and, in the middle part, the function Rotable

(t) generated for
the table. Both functions reach Rmax during the time of the
activity. It is also observed that the graph of the function
Rostretcher

(t) remains constant, set to Rmin, since there is
no activity scheduled for that object.

From Fig. 9a to Fig. 9d four snapshots of the use case are
shown. Fig. 9 is linked to Fig. 8 by the numerical labels
inside the speech balloons. This means that the snapshot
shown in Fig. 9a was taken at the time 1 shown in Fig. 8.
Therefore, Fig. 9a shows the path that the robot would plan
at 9:30 am. In Fig. 8 the therapist icon is crossed out to
point out that there is no activity scheduled for that object at
that time. It is observed that the path crosses the affordance
space of the television, because it has no activity planned at
that time. Fig. 9b shows the path that the robot would plan
at 10:45 am. Although the activity has not yet begun, the
therapist icon is not crossed out to indicate that an activity
will soon begin. It can be seen that the path slightly crosses
the affordance space of the television, since, although it does
not have any activity planned at that time, it will start soon.
Fig. 9c is similar to the previous one, however, as the activity
has already begun, the path moves further away from the
television and never invading its affordance space. Then, the
robot’s task is to navigate to the right side of the television
following the path described in Fig. 9c. Continuing as before,
Fig. 9d shows the path that the robot plan at 13:15 am. This
is the last hypothetical planning before navigate to the table.
Then, the robot’s task is to navigate to a position near the
table following the path described in Fig. 9d.

In the use case described, the influence of the time-
dependent affordance space on the shortest path planning
by the robot is clearly appreciated. The combination of the
variation of the planned path in function of time and personal
spaces achieves a behaviour more in line with our social
conventions 1.

In order to assess the validity of the proposed navigation
approach, the methodology has been evaluated accordingly to
the following metrics: (i) average minimum distance to a hu-
man during navigation, dmin; (ii) average minimum distance
to objects (dStretcher, dTable, dTV ); (iii) distance traveled,
dt; (iv) cumulative heading changes, CHC; and (v) personal
space intrusions, Ψ. These metrics have been already estab-
lished by the scientific community (see [13], [14]). It can be
seen in Table I how the two paths performed by the robot
completely respect human personal spaces, navigating only
in public space. In fact, the percentage of the path that going
through personal spaces (Lintimate, Lpersonal, Lsocial), is
remained at 0%, consequently public space, Ψ (Public), is
remained at 100% during the two trajectories. Similarly, nav-
igation respects the minimum distances to objects according
to the activities schudeled in the center’s agenda. In fact the
minimum distance (0.62m) to the TV is reached when the
robot starts the second path, since it should turn completely
to start the second path, getting little closer to the TV than
at the end of the first path (0.84m).

In order to demonstrate the robustness of the proposal,
a longer video is included where the robot navigates to
random positions in the center, while the tasks programmed
in the different objects also vary randomly. Also, a person

1Link to the experiment: https://www.youtube.com/watch?v=
FsfsK7eVYVI
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Fig. 8: R(t) functions to time-dependent affordance spaces
for the objects described in the experiments.

(a) (b)

(c) (d)

Fig. 9: Time-dependent affordance spaces for the use case.
a) Path at 9:30 am, no activity scheduled b) Path at 10:45
am, serious game activity will start soon on TV c) Path at
11:15 am, serious game activity has started on TV d) Path at
13:15 am, serious game activity has ended and the activity
at the table has begun.

is included to show how their personal spaces are taken into
account in the navigation 2.

VII. CONCLUSIONS AND FUTURE WORKS

Human-aware robot navigation is a difficult skill because
the circumstances in which the human-robot, human-human,
or human-object interactions happen, require a navigation
system capable of detecting and responding according to
those situations. In eldercare centers, it is possible to as-
sociate some of the interactions associated with objects with
the daily agenda of therapeutic activities. Including this
time dependency in the path planning process is the major
innovation proposed here. Resting on Dijkstra’s algorithm,
the enhancement modifies the value of the free space graph

2Link to the experiment: https://www.youtube.com/watch?v=
gkx-ya2-yEo

TABLE I: Navigation results
PATH 1 PATH 2

Parameter Value (σ) Parameter Value (σ)

τ (s) 36.37 τ (s) 24.76
CHC 18.20 CHC 9.75

dmin Person (m) 2.19 dmin Person 1 (m) 1.75
dmin Stretcher (m) 1.06 dmin Stretcher (m) 3.44
dmin Table (m) 1.60 dmin Table (m) 1.45
dmin TV (m) 0.84 dmin TV (m) 0.62

Ψ LIntimate (%) 0.0 Ψ LIntimate (%) 0.0
Ψ LPersonal (%) 0.0 Ψ LPersonal (%) 0.0

Ψ LSocial (%) 0.0 Ψ LSocial (%) 0.0
Ψ (Public) (%) 100 Ψ (Public) (%) 100

according to time-dependent affordance spaces, improving
the social robot navigation.

As future work, we intend to study the degree of adap-
tation to our social conventions of the paths executed by
the robot through qualitative research. We are also studying
whether the incorporation of time into personal spaces can
improve our line of research on social navigation.
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